Kkit.llm_utils.data_process
1def input_output_to_messages(input_key, output_key, dataset, drop_input_output=True): 2 def _fn(examples): 3 return { 4 "messages": [ 5 {"role": "user", "content": examples[input_key]}, 6 {"role": "assistant", "content": examples[output_key]} 7 ] 8 } 9 10 return dataset.map(_fn, remove_columns=[input_key, output_key] if drop_input_output else None)
def
input_output_to_messages(input_key, output_key, dataset, drop_input_output=True):
2def input_output_to_messages(input_key, output_key, dataset, drop_input_output=True): 3 def _fn(examples): 4 return { 5 "messages": [ 6 {"role": "user", "content": examples[input_key]}, 7 {"role": "assistant", "content": examples[output_key]} 8 ] 9 } 10 11 return dataset.map(_fn, remove_columns=[input_key, output_key] if drop_input_output else None)